
Investment Relation 2019

EUTILEX Co., Ltd.

획기적인 면역항암치료를 통해 부작용 없이 암을 완치

Breakthrough immunotherapeutics against incurable diseases

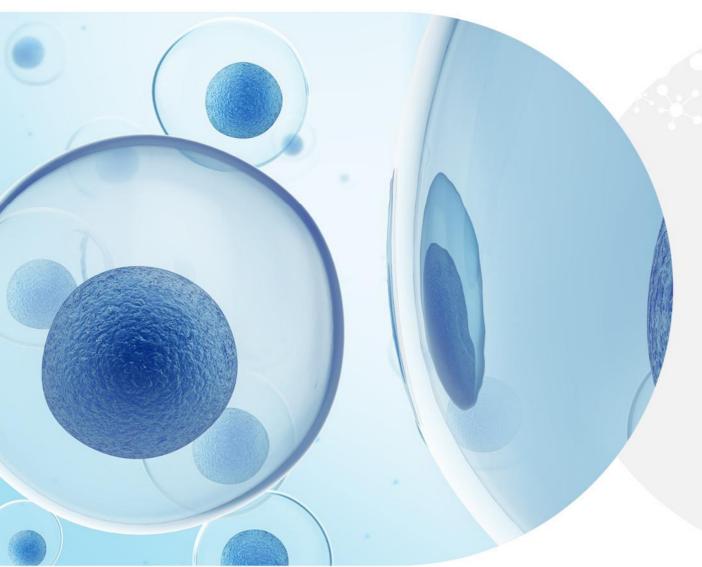
Investor Relations 2019

TABLE OF CONTENTS

Chapter 1. 차세대 면역항암제 시장의 선도 기업

Chapter 2. 면역항암제 시장과 전망

Chapter 3. 항체치료제(면역관문활성제)


Chapter 4. 유틸렉스 T세포치료제

Chapter 5. CAR-T세포치료제

Chapter 6. 유틸렉스 성장전략

Appendix

Chapter 1.

차세대 면역항암제 시장의 선도 기업

- **01.** Company Identity
- 02. 회사 소개
- 03. Man Power

차세대 면역항암제 시장의 선도 기업 '유틸렉스'

혁신적인 면역치료제 개발 플랫폼 기술 보유

항체치료제 (면역관문활성제) 플랫폼 유틸렉스 T세포치료제 (면역세포치료제) 플랫폼 CAR-T세포치료제 (면역세포치료제) 플랫폼

보유 파이프라인 EU101: 4-1BB

앱비앤티: 임상 2상 (혈액암 EBV target)

MVR CAR-T

EU102: AITR

ITR 터티앤티: 연구자 임상 (고형암 hTERT target)

고형암 CAR-T

EU900: Bispecific Antibody

10 more antibodies

(고형암 WT1 target)

위티앤티: 임상 1상

CAST 임상 (고형암 multi-targets)

노벨상에 가장 근접한 국가 석학, 권병세 대표이사

세계 최초로 킬러 T세포 활성화 인자인 4-1BB, ATR 항체 발굴 및 개발

기업 개요 (2019.07.24기준)

대표0사	권병세(前 국립암센터 면역세포치료사업단장)
설립일	2015년 2월 27일
소재지	서울특별시 금천구
주요사업	항체치료제(면역관문활성제) 유틸렉스 T세포치료제(면역세포치료제) CAR-T세포치료제(면역세포치료제)
자본금	3,632백만 원
종업원	95명
연구인력	34명(박사 15명, 석사 17명)
시설 규모	본사및 연구소(약264평) GMP시설(약400평) 동물실험실(약80평)

CEO Introduction

대표이사 권 병 세

• 前 국립암센터 석좌교수, 신치료기술개발사업단 단장

• 前 울산대학교 화학생명과학부 교수 및 IRC* 소장

・前 Indiana University School of Medicine 종신교수

• 前 Yale University 연구원

• 교육부선정 국가석학 Star Faculty Award 수상('05)

*IRC: 면역제어연구센터

세계 최초 '4-1BB', 'AITR' 발견

- 1989년 '4-1BB' 전세계 최초 발견 (SCI급 논문 17,000회 이상 피인용)
- **1995년 '4-1BB' 항체 발굴** 현재 유틸렉스 항체치료제 EU101으로 개발 중
- 1999년 Conversion 기작의 'AITR' 최초 발견
- **2007년 'AITR' 항체 발굴** 현재 유틸렉스 항체치료제 EU102로 개발 중

후보물질 발굴부터 임상, 상용화까지 화려한 이력의 임상 · 사업화 인력 보유

전체 연구인력 34명 (전체 인력 대비 35.7%): 세계적으로 우수한 연구진

권병세때표이사

신약개발실장 (CDO) **한정훈** 부사장

시업개발실장 (CBO) De la calle Agustin 부사장

경영기획실장/ 특허전략장실 (CFO/CPO) 최소희 부사장

연구소장/CTO) 김영호 전무

다국적 회사에서 다수의 신약 임상, 허가, 상업화 경력 25년

- 고려대학교 유전공학과 학사
- 미국 뉴저지 주립대 의대 암연구 박사
- 하버드 메디컬 스쿨 Post Doctor
- 아시아태평양 항암사업부 마케팅 총괄 - 릴라이릴리, 아스트라제네카, 비엠에스
- 아시아태평양 항암사업부 메디칼 총괄 - 베링거잉겔하임, 먼디파마, 암젠

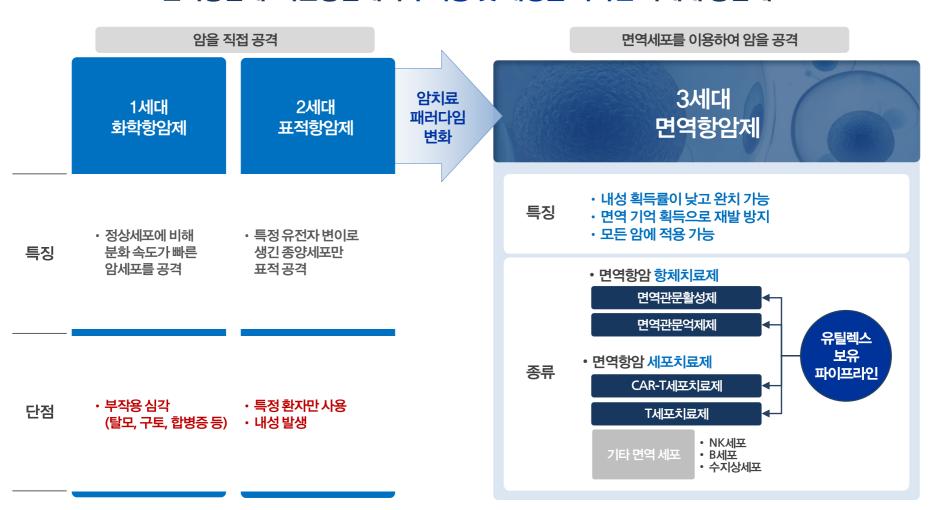
- 베를린자유대학교 박사
- 하버드 의과대학 Research
- MIT Post Doctor
- Innate Pharma 사업개발 총괄
- Gemmus Pharma 사업개발 부사장 (acqu. by Amgen \$1.2B)
- 한국보건산업진흥원 상임컨설턴트

제약/바이오 혁신 기술 사업화 및 글로벌 특허 전략 경력 25년

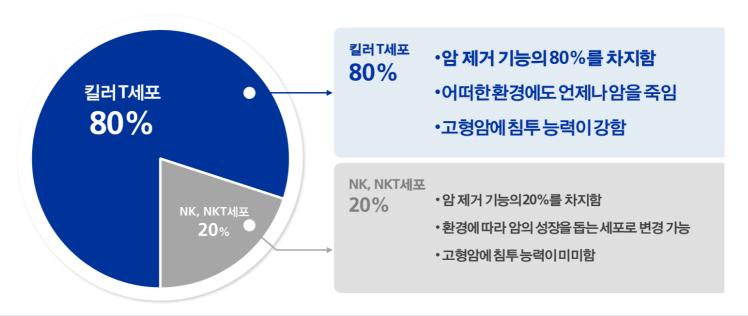
- 서울대학교 화학과 학사
- 위스콘신 매디슨 대학교 생화학 박사
- 미네소타대학교 법과대학 법학 박사
- 삼성전자 수석변호사
- 툴젠 법무 총괄(법무실장)
- 글로벌 미국 로펌 변호사

의약품 제조, 품질관리 전문가 면역학/세포치료제 공정개발 경력 18년

- 울산대학교 분자미생물학 학사
- 울산대학교 면역·의생물학 박사
- 울산대학교 면역제어연구센터
- 국립암센터 세포치료제 생산실장



Chapter 2.


면역항암제 시장과 전망

- 01. 3세대 항암제 '면역항암제'
- 02. 암을 직접 죽이는 면역세포
- 03. 킬러 T세포 활성화 Mechanism
- 04. 노벨상 수상 기술과 대등한 기술력
- 05. 항암제 시장 전망
- 06. 글로벌 라이선스 현황

면역항암제: 기존항암제의 부작용 및 내성을 극복한 차세대 항암제

킬러T세포와 NK 및 NKT 세포 비교

주요 면역 세포의 종류와 역할

T 세포의 종류와 역할 T세포

• B세포

• 수지상세포

• NK, NKT세포

• 대식세포

• 킬러 T세포 (Killer T cell)

• 도움 T세포 (Helper T cell)

• 조절 T세포 (Regulatory T cell)

• 기억 T세포 (Memory T cell)

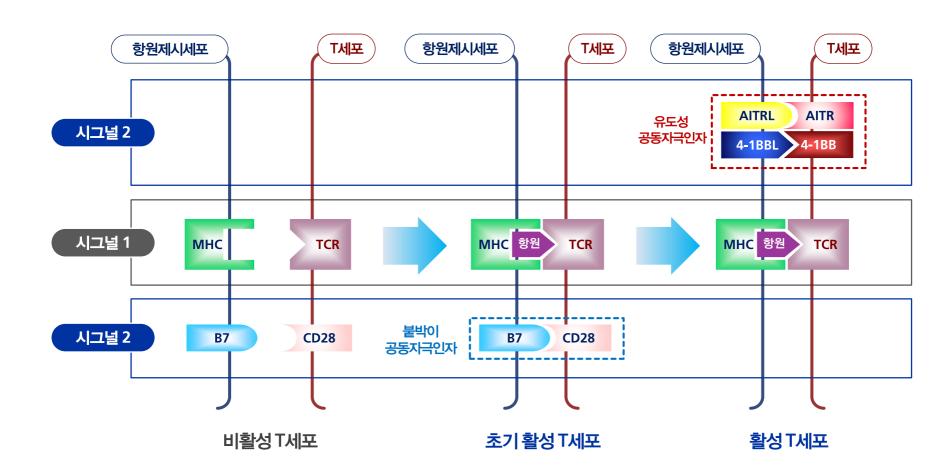
후천적 면역으로 항원 특이적인 공격력을 가지고 있으며 직접 암세포나 바이러스, 병원균을 공격

외부에서 침입하는 항원에 대항하여 항체를 만들어 내는 역할

항원을 전달하는 세포(항원제시세포) 중 하나로 T세포의 분화를 돕기도 함

선천적 면역으로 암세포나 바이러스 등의 외부 항원을 신속하게 파괴하는 역할

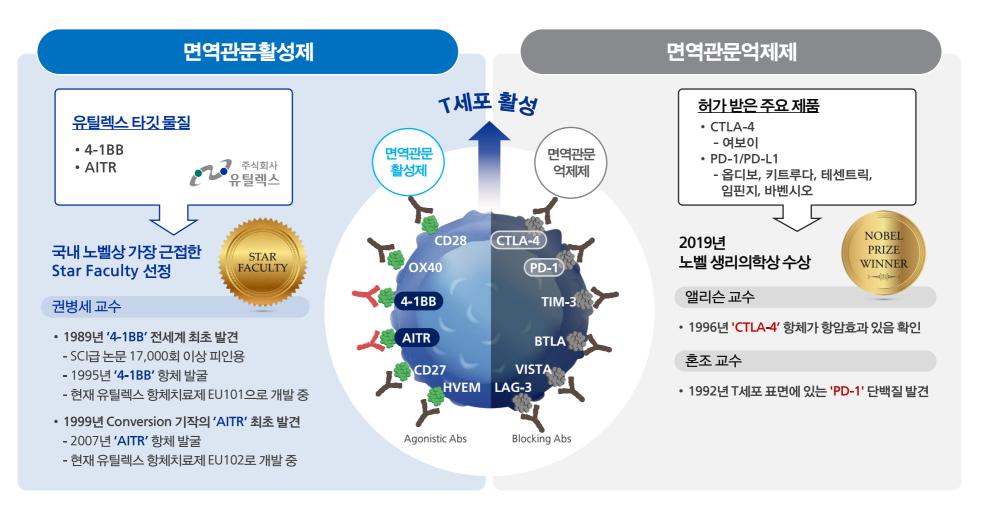
침입하는 단백질과 미생물을 감싸 삼킨 후 특유의 효소를 사용하여 중화를 시키거나 파괴

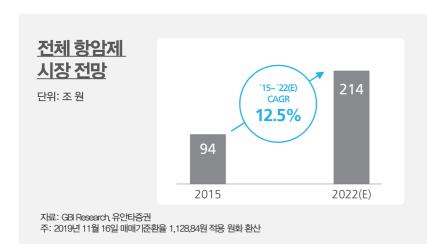

특정 암세포를 공격하는 T세포

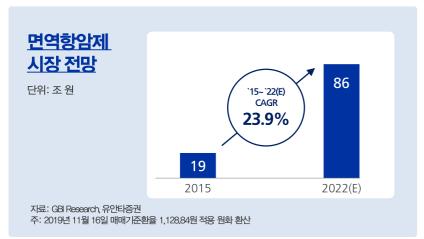
킬러 T세포를 활성화를 돕는 T세포

과민한 면역 반응을 억제하는 기능을 수행하는 T세포로 말 그대로 면역 반응을 조절하는 기능을 가짐

활성화된 T세포 중 일부가 기억 T세포로 변화하면서, 특정 암세포 유전자를 장기간 기억하는 역할을 함






노벨상 수상 기술과 대등한 유틸렉스만의 차별화 항체 기술

세계 최초, T세포 활성화 인자 4-1BB, ATR 항체 발굴 및 활용

면역항암제의 뛰어난 효력과 확장성으로 면역항암제 시장의 고속 성장

면역항암제 출시 현황

항체치료제(면역관문억제제) 출시

2011년: CTLA-4(여보이)

2015년: PD-1/PD-L1(옵디보, 키트루다, 테센트릭, 임핀지, 바벤시오)

세포치료제 출시

2017년: CAR-T세포치료제(킴리아, 예스키타)

면역항암제 장점

① 강력한 항암 효과

기존 치료제로 한계가 있던 흑색종암(피부암), 폐암에서 강력한 항암효과를 보임

② 확장성

1~8개 적응증(화학 및 표적치료제: 1~3개)

PD-1 / PD-L1	옵디보	키트루다	테센트릭	임핀지	바벤시오	총적 응증 수
FDA 승인	11	12	5	2	2	32
3상	6	6	7	2	6	27

③ 추가적인 Target 등장 가능

다수의 면역관문 억제/조절 인자 존재(4-1BB, AITR, OX40 등 다수)

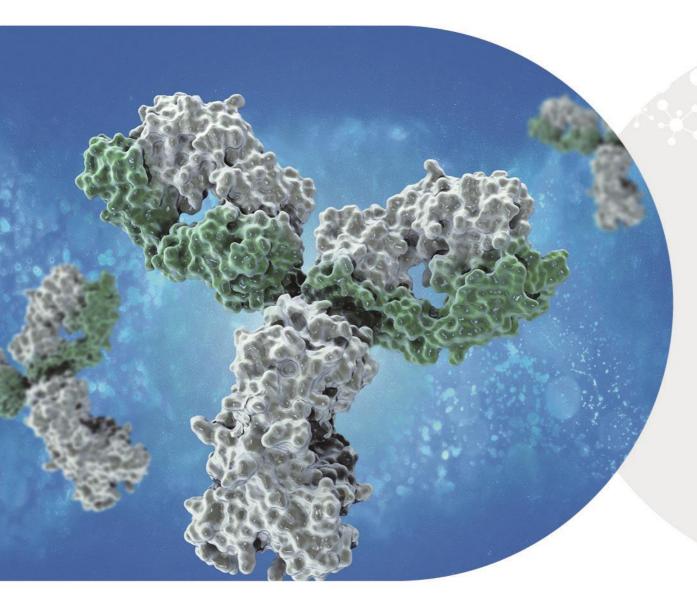
글로벌 라이선스 거래를 주도하는 면역항암제

• 옵디보 매출: 2014년 출시, 2018년 매출 7.6조 원 • 키트루다 매출: 2014년 출시, 2018년 매출 8.1조 원

2014년부터 2017년까지 전세계 全 적응증 신약 라이선싱 딜의 규모 순 Top 10 중 5건이 항암제이며 그 중 3개가 면역 항암제 파이프라인임

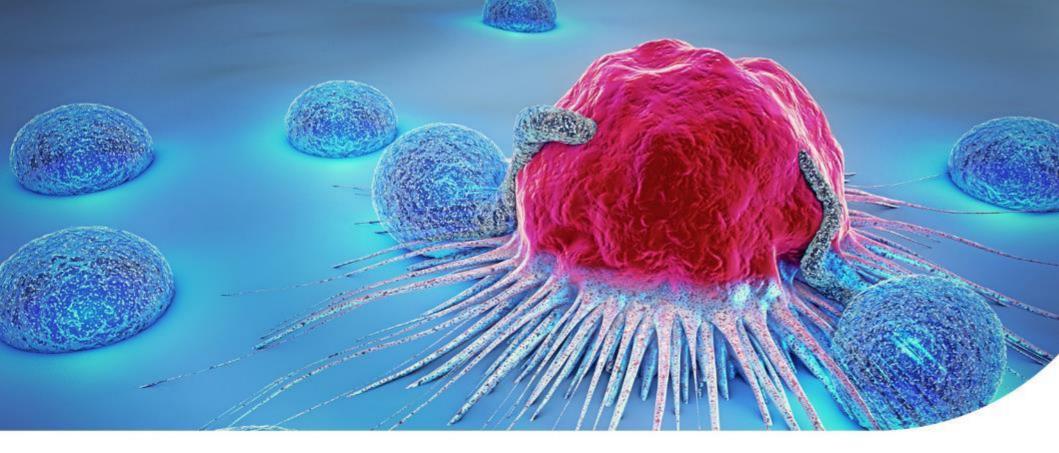
인수 회사	판매 회사	파이프라인	계약금	총계약규모	계약일	종류
Pfizer	Merck KGaA	Bavencio(avelumab, PD-L1)	\$850 million	\$2.8 billion	14년 11월	면역항암제
Sanofi	Regeneron	REGN2810(PD-1)	\$650 million	\$1.025 billion	15년 7월	면역항암제
Celgene	AstraZeneca	Imfinzi (durvalumab, PD-L1) Hematologic malignancies	\$450 million	-	15년 4월	면역항암제

자료: Endpoint News


M&A Deal: Top 5 중 2 CAR-T 회사 M&A(Q1 2017~Q1 2019)

인수회사	피인수 회사	인수금액	피인수 회사 특징	완료 기준
Gilead Sciences(US)	Kite Pharma(US)	\$11.9 billion	CAR-T Developing Company	17년 10월
Celgene(US)	Juno therapeutics(US)	\$9.0 billion	CAR-T Developing Company	18년 1월

자료: Contact pharma, Chimera Research Group



Chapter 3.

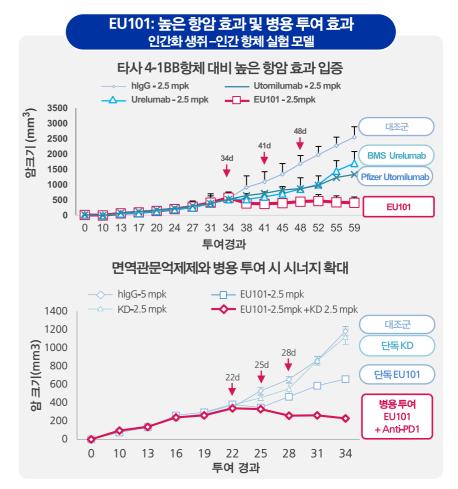
<mark>항체치료제</mark>(면역관문활성제)

- 01. EU101 차별화 기작
- 02. EU102 차별화 기작
- 03. 기술이전 및 파이프라인 확대

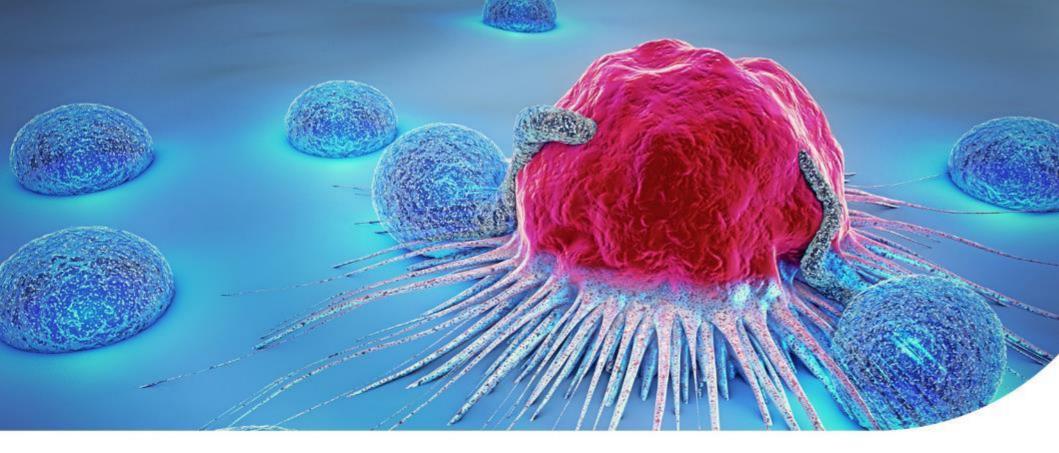
Eutilex Antibody Therapy

EU101

: 4-1BB Targeted Antibody


차별화된 획기적 항체치료 기술: 킬러 T세포 활성화 및 증식

타 치료제 대비 높은 항암 효능 입증, 모든 암에 적용 가능



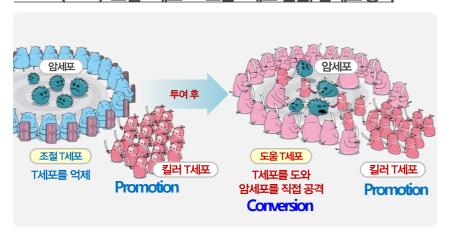
경쟁약물 특성 비교

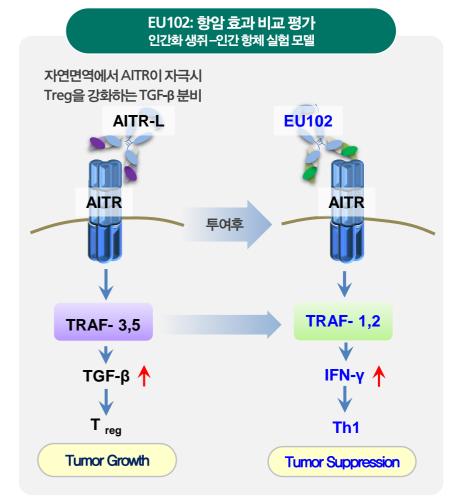
구분	유틸렉스-EU101	Uxmab-B	Uxmab-P
lgG 형태	Engineered lgG 1	lgG 4	lgG 2
항원결합력 (Affinity)	++++	++++	++++
효능	++++	++	+++

Eutilex Antibody Therapy

EU102

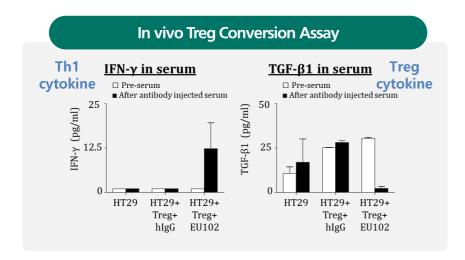
: AITR Targeted Antibody

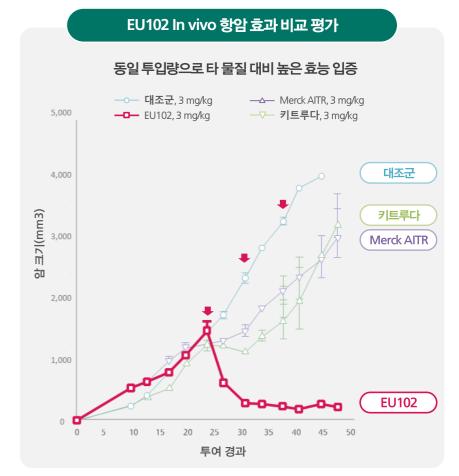



Dual Function으로 효력 극대화

- Promotion: 킬러 T세포 활성화 및 증식
- Conversion: 조절 T세포를 도움 T세포로 전환하여 암세포 사멸

EU102(AITR): 조절 T세포 → 도움 T세포 전환, 암세포 공격




세계적으로 유래 없는 작용기전 보유: 조절 T세포를 도움 T세포로 전환

- 타 치료제 대비 높은 항암 효능 입증
- 모든 암에 적용 가능 (피부암, 유방암, 대장암 In vivo 확인)

EU102 : 경쟁약물 효능 비교

구분	유틸렉스-EU102	Merck AITR	GITR AITR	AITR-B
조절T세포 억제	++++	++	++	No data
조절 T세포 → 도움 T세포 전환	++++	-	-	-
항암효과	++++	++	No data	No data

높은 항암 효과로 화해제약과 기술이전 계약

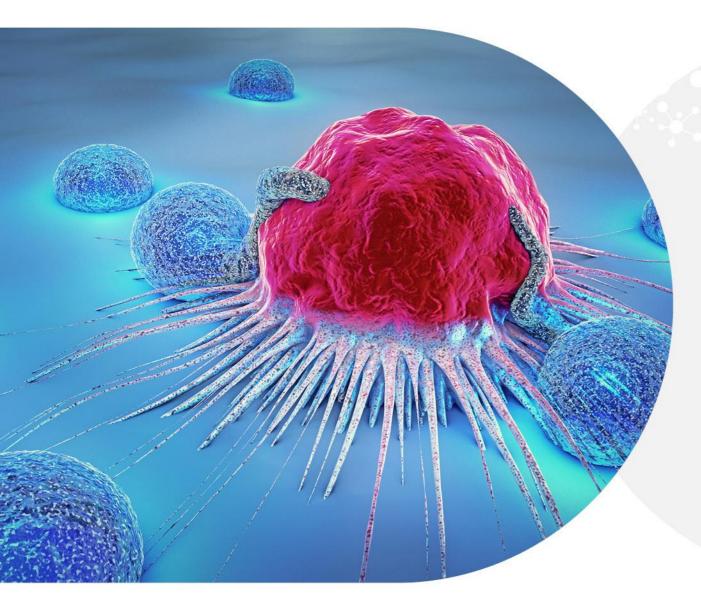
향후 파이프라인 확대 및 추가 라이선스 아웃 전개

화해제약 EU101기술이전

지에게를 다마	
회사명	Zhejiang Huahai Pharmaceutical, LTD. (절강화해제약)
본사위치	중국린하이시
매출액/ 영업이익	2018년 기준약 8,800억 원 / 820억 원
주요제품	전문의약품, 원료의약품, 바이오의약품 등
기술이전 주요내용	 지역: 중국전지역(대만, 홍콩, 마카오 포함) 권리: EU101 개발권 및 판권 (1개물질에 대한 기술이전) 착수금: 100만달러 세부사항(10개 적응증 승인시 전체 3,550만 달러 규모) 임상종료까지 약 450만 달러 적응증 1개 승인시 300만 달러 적응증 1개추가시 300만 달러 로열티 별도
투지금액	3,000만 달러(공모후 지분율: 16.8%)

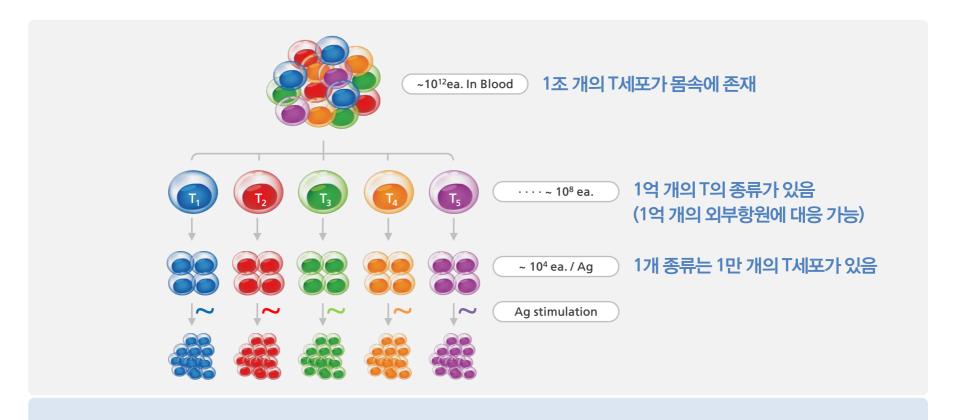
유틸렉스 보유 항체치료제 파이프라인

항체	<u>발</u> 현 세포	현세포 표적분자		
EU101	T cell	T cell 4-1BB		
EU102	T cell, Treg	T cell, Treg AITR 암		
EU103	Macrophage	****	암	
EU104	T cell, Treg	****	자가면역질환	
EU105	T cell, NK cell	****	암	
EU106	T cell, Treg	****	암	
-	T cell, Treg	****	암	
-	T cell, NK cell	****	암	
-	Cancer	****	암	
-	B cell	****	암	
-	T cell	****	암	
-	T cell	****	암	
-	T cell	****	암	
-	Dendritic cell	***	자가면역질환	
EU900	T cell/Treg	4-1BB/AITR	암	
EU901	T cell/tumor	4 - 1BB/TAA*	암	
EU902	T cell/tumor	AITR/TAA*	암	


EU901, EU902

- Bispecific Ab Platform
- 4-1BB나 AITR을 기본으로 T세포와 암세포를 연결하여 암을 치료

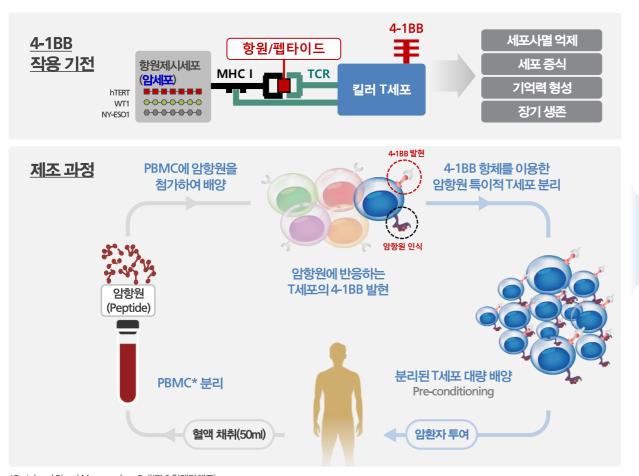
^{*}TAA: Tumor Associated Antigen



Chapter 4.

유틸렉스 T세포치료제

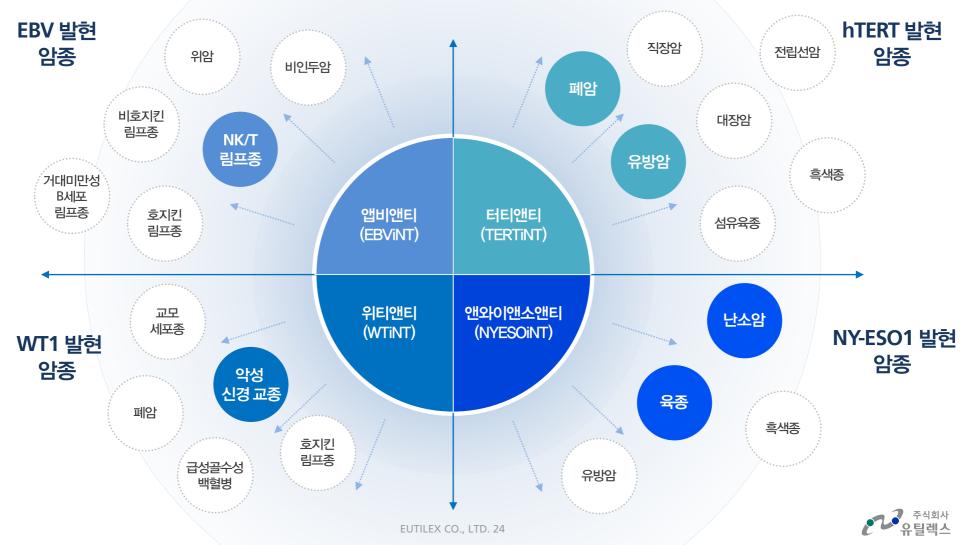
- 01. 핵심 기술(1)(2)
- 02. 확장성
- 03. 앱비앤티
- 04. 터티앤티, 위티앤티
- 05. CAST 임상


고도의 암특이적 T세포 분리 기술 보유: 1억 분의 1개 만을 분리 배양 기술력

인간의 몸 속에 존재하는 1조 개의 T세포에서 환자가 가진 암에 반응하는 1만 개의 T세포(약 1억 분의 1개)만을 분리 배양 하는 것이 기술력

세계 유일, 4-1BB 기반의 암항원 특이적 고순도 킬러 T세포 플랫폼 기술 확보

고순도, 안전성, 생산성, 확장성의 킬러 T세포 추출 등 경쟁력 확보



고순도(95%이상) 킬러 T세포 추출 가능 • 강력한 효력 안전성 • 자가유래 • 유전자 조작이 없음 생산 경쟁력 • 표준화된 공정 • 생산공정의 효율화 확장성 • 각각의 암에 적절한 Peptide 확보 → 모든 암에 적용 가능

^{*}Peripheral Blood Mononuclear Cell(말초혈액단핵구)

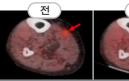
유틸렉스 T세포치료제 플랫폼 기술: 확장성

각각의 암에 적절한 Peptide만 확보하면, 모든 암 치료에 적용 가능

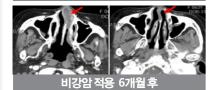
앱비앤티는 전세계 최초로 NK/T세포 림프종에서 임상 2상으로 조기 상용화 예정

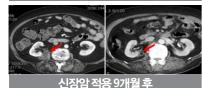
출시된 모든 면역항암 항체치료제와 세포치료제는 임상 2상으로 FDA와 EMA에서 제품 승인 획득

임상 1상 (말기암 환자 8명 진행, 50% ORR)



임상 2상 (2019년 3분기 ~ 2020년 4분기)


NK/T세포림프종 2명의 환자 모두가 완전관해


NK/T세포림프종 환자

단 1회 투여로 완전관해 투약후 9개월에도 암세포 공격확인

하퇴부암적용4주후

호지킨 림프종 환자

EB Virus 양성과 음성 종양을 모두 가진 환자 대상 EBV 양성 종양이 깨끗하게 사라짐을확인

호지킨림프종적용1개월후

First In Class

전세계 최초 NK/T세포림프종 치료제로 FDA/EMA 허가 예정

Best In Class

임상 1상보다 더 강력한 효력 기대

- 과거임상1상
- 면역계 제거(Lymphodepletion)를 하지 않음
- 한번 투여 (1 cycle)
- 임상2상
- 면역계를 제거 및 더 많은 수의 T세포 투여
- 세 번 투여 (3 cycles)

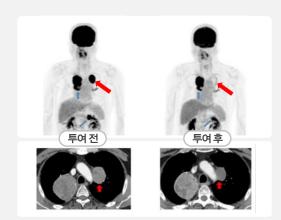
면역계제거예시(Steven Rogenberg's data)

국내 및 미국 2상으로 조기 상용화

FDA's

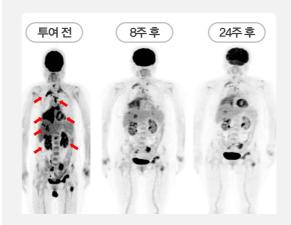
"Breakthrough designation"란?

- Innovative medicine 면역 항암 세포 치료제
- Life-threatening diseases 말기 암환자
- 표준 치료제가 없다면 2상 임상으로 허가 임상 가능
- 모든 항체치료제(PD-1), T 세포치료제(CAR-T)는 말기암에서 2상으로 FDA 제품허가를 받음



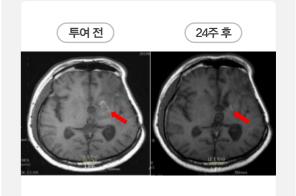
터티앤티, 위티앤티(국립암센터 임상 1상 진행중)

기존 T세포치료제와 달리 고형암에서도 높은 효능 입증


터티앤티(연구자임상)

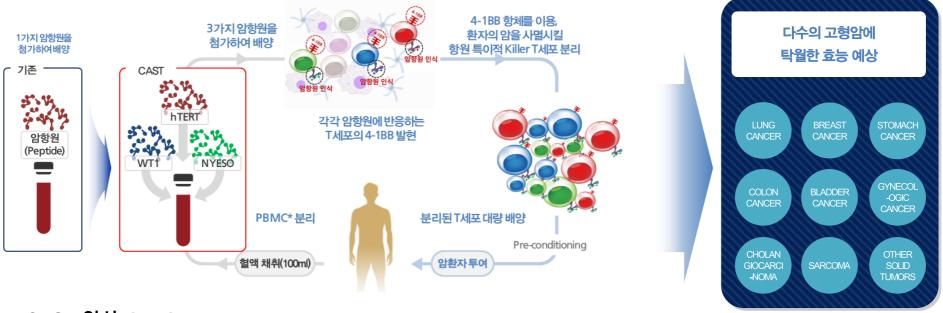
Case 1. 비소세포성폐암

- 기존치료: 5 가지 종류의 항암치료
- 1회 투여
- 종양 크기가 기존 대비 25.9% 경감

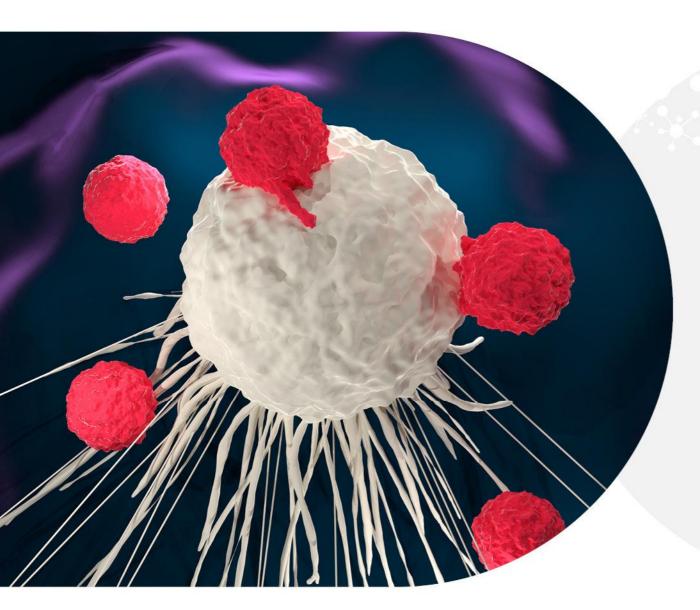

Case 2. 유방암

- 기존치료: 9 가지 종류의 항암치료
- 1회 투여
- 종양 크기가 현저히 감소
- 말기암 환자 대상 투여 3년 후인 현재 시점에도 생존

위티앤티(임상 1상)


Case 1. 악성뇌종양

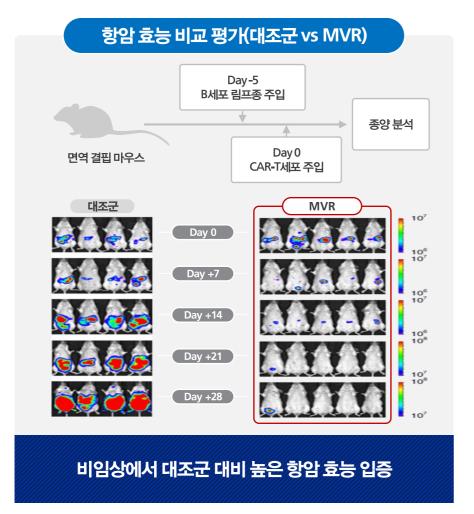
- 기존치료: 5 가지 종류의 항암치료
- 1회 투여
- 종양 크기가 현저히 감소
- 말기암 환자 대상 투여 3.6년 후인 현재 시점에도 생존

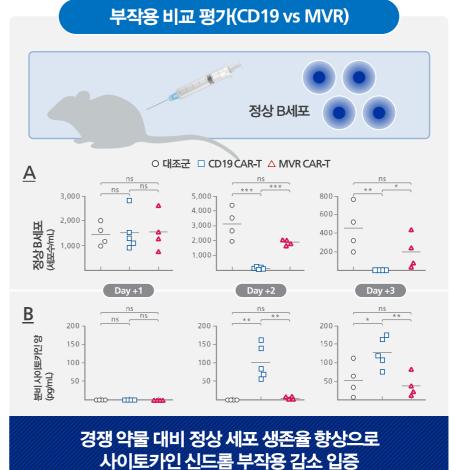

CAST는 Solid tumor의 이질성을 극복하기 위해 다수의 암항원을 첨가, 암세포 사멸 기능이 향상된 개인맞춤형 T 세포치료제의 임상 진행

CAST 임상 timeline

	1year		2year			3year						
Indications		2019		2020			2021					
	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q
Ovarian cancer (SMC)	Manufacturing & Protocol Development/MFDS Discussion			IND/IF	RB Apprv.	Investigator Initiated Trial (20 Pts.)						
Gastric, Breast and Other Solid Cancer (KUMC/Yonsei Severance/NCC)	Protocol	Manufacturing & Protocol Development/MFDS Discussion			IND/IF	RB Apprv.		Investiç	gator Initia	nted Trial (20 Pts.)	

Chapter 5.


CAR-T세포치료제


- 01. 차별화 기작
- 02. MVR CAR-T 비임상 결과
- 03. CAR-T 파이프라인

CD19 CAR-T보다 높은 효능, 낮은 부작용, 효율적 생산단가, 적응증 확대

CD19 CAR-T **MVR CAR-T** 암 세포 정상 세포 암 세포 정상 세포 암세포만 선택적 HLA-DR 미세빌현 CD19 공격으로 부작용 부작용 최소화 CAR-T CAR-T **CAR-T** CAR-T CD19는 정상세포에서도 발현 HLA-DR은 암세포에서 과발현 정상세포도 공격 암세포만 공격 림프종 림프종 골수성 대장암 백혈병 다양한 암에 적용 가능 적응증 공격 ੈਰਿਕ 공격 CAR-T CAR-T 기존 대비 암세포 차세대 4-1BB 1세대 4-1BB 4-1BB 살상능력 우수 (독자적인 4-1BB 신호전달 도메인 도입) 형질변환 1회 가격 경쟁력 보유 제조 공정 형질변환 2회 (제조공정단순화)

비임상에서 높은 항암 효능 및 부작용 감소 입증

EUTILEX has Innovative, Prolific and Diverse CAR-T Pipelines

MVR CAR-T

Autologous CAR T

HLA-DR

Reducible Side Effect by

Selective Attack to Tumor Cell

Preclinical

(2020 1Q Phase 1 start)

Hematologic malignancy
Colon cancer

Target

Classification

Indication

Costimulatory 2nd Generation 4-1BB signal domain (Stronger 4-1BB Signal Domain)

Strong Point

Step

Solid Tumor CAR-T

Autologous CAR T

Solid Tumor

Undisclosed

2nd Generation 4-1BB (Stronger 4-1BB Signal Domain)

Confirmed in vitro Efficacy at Solid tumor

Development

Universal CAR-T

Allogeneic CAR T

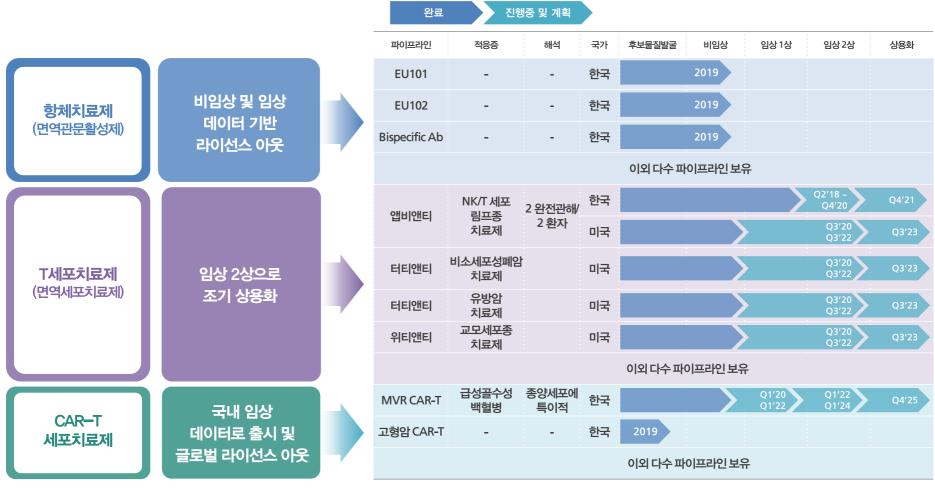
All Cancers

Possible to apply all targets

Able to Choose by kind of tumor

Off the shelf & applicable to all patients with few side effects

Development



Chapter 6.

유틸렉스 성장전략

- 01. 사업 전략 및 차별화 파이프라인
- 02. Vision
- 03. Investment Highlights

빠른 시장 진입 및 수익 실현을 위한 사업 영역별 차별화 전략 전개 기존의 면역항암제와 차별화되는 신약 파이프라인 보유

면역 항암제 분야에서 선두적인 역할을 하는 Global Biopharma

태동기 (2008~2014)

- 유틸렉스 T세포치료제 개발
- 임상 1상 진행

설립기 (2015~2017)

- 유틸렉스 회사 설립
- GMP. 동물 실험실 설립

유상 증자

- 95억 원, 210억 원

중국화해제약

- EU101 라이선스 아웃
- 유상증자 330억 원

성장기 (2019~2021)

면역관문활성제

- 비임상/임상데이터로 글로벌 라이선스 아웃

T세포치료제

- FDA 허가임상 진행

CAR-T세포치료제

-국내 임상 자료로 글로벌 라이선스 아웃

Vision 달성 (2022~)

면역관문활성제

- 보유파이프라인 개발과 지속적인 라이선스 아웃

T세포치료제

-글로벌 출시로 조기 상용화 달성

CAR-T세포치료제

- CAR-T세포치료제 후보물질 지속 개발

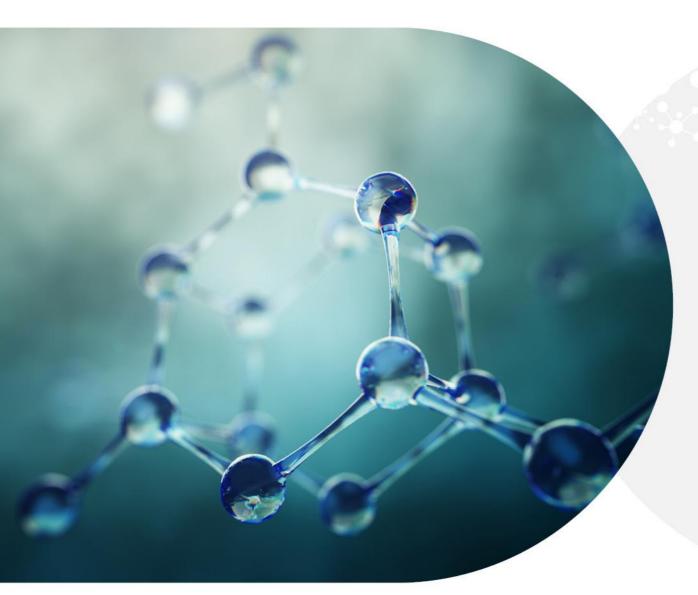
세포치료제 상용화를 통한 자금 안정성 확보 및 중장기 성장을 위한 파이프라인 지속 확대

유틸렉스, 면역항암제 개발의 선두주자로 글로벌 리더를 지향

기술력

시장성

사업성


- 기존 노벨상 수상기술과 대등한 기술력
- 글로벌 수준의 차별화된 면역항암제 개발 기술 보유
- 전임상, 임상 등을 통해 입증된 효능
- 세계적인 수준의 경영진 및 우수한 연구 인력 보유

- 현재 표준치료제가 없는 영역을 타깃으로 신약임상 진행 중
- 환자들의 미충족 수요에 집중화하여 개발된 약제들의 시장성
- 2022년 미국 시장 진입을 시작으로 유틸렉스 T세포치료제들의 전세계 시장 확장
- 출시된 면역항암제와 다른 기전으로 병용요법 개발 가능

- 임상 2상으로 신속허가제도를 통한 조기 상용화 가능
- 제조공정의 표준화, 제품의 규격화
- 경제적 생산비용으로 수익률 극대화
- 글로벌 제약사와 라이선스 딜

Appendix

01. 요약 재무제표

02. 주요 용어설명

Investor Relations 2019 요약재무제표

요약 재무상태표

단위: 백만 원

구분	2015	2016	2017	2018
유동자산	8,605	18,739	41,247	63,578
비유동자산	524	12,811	17,241	21,500
자산총계	9,129	31,550	58,488	85,078
유동부채	175	577	2,030	6,900
비유동부채	24	5,108	5,327	670
부채총계	200	5,685	7,357	7,569
자본금	278	2,647	3,258	3,632
자본잉여금	9,501	28,107	60,671	97,642
기타자본요소	-	1,074	2,758	5,009
결손금	-850	-5,963	-15,556	-28,773
지본총계	8,929	25,865	51,131	77,510

주: KHFFS 기준

<u>요약 손익계산서</u>

단위: 백만 원

구분	2015	2016	2017	2018
매출액	-	-	133	402
매출원가	-	-	-	-
매출총이익	-	-	133	402
판매비와관리비	914	5,178	9,949	14,113
영업이익	-914	-5,178	-9,816	-13,711
기타손익	-	3	70	-25
금융손익	64	61	154	519
법인세비용차감전 순이익	-850	-5,114	-9,593	-13,217
당기순이익	-850	-5,114	-9,593	-13,217

주: K-ITRS 기준

용어	용어설명
4-1BB	공동자극 수용체의 한 종류로 T세포를 활성화 시킴
AITR	T세포 수용체의 하나로 T세포 활성화 및 조절 T세포를 억제하는 기능을 가짐
<mark>킬러 T세</mark> 포 (Killer T cell)	특정암세포를공격하는T세포
도움 T세포 (Helper T cell)	킬러 T세포를 활성화를 돕는 T세포
조절 T세포 (Regulatory T cell)	과민한 면역 반응을 억제하는 기능을 수행하는 T세포로 말 그대로 면역 반응을 조절하는 기능을 가짐
기억 T세포 (Memory T cell)	활성화된T세포 중 일부가 기억T세포로 변화하면서, 특정 암세포 유전자를 장기간 기억하는 역할을 함
수지상세포 (Dendritic cell)	병원균을 포함한 항원을 처리하여 면역계의 다른 세포에게 항원을 전달하는 역할을 함
NK세포 (Natural killer cell)	선천면역을 담당하는 중요한 세포로, 바이러스 감염세포, 종양세포 등의 비정상세포를 공격할 수 있는 세포임
MHC (Major Histocompatibility Complex)	인체 내 모든 조직세포의 표면에 표현되며 자기 및 비자기의 인지, 항원자극에 대한 면역반응, 세포성면역과 체액성면역의 조절, 그리고 질병에 대한 감수성에 관여함
TCR (T cell receptor)	T세포의 표면에 존재하는 수용체로서 'MHC'라는 단백질의 도움을 받아 숙주세포 표면에 제시된 항원 조각에만 결합함
작용기전 (Mode of Action)	의약품이 효능을 나타내는 화학적 작용의 과정과 원리
기작 (Mechanism)	식물이 생리적인 작용을 일으키는 기본적인 원리
펩타이드 (Peptide)	아미노산 단위체들이 인공적으로 혹은 자연 발생적으로 연결된 중합체.
항원결정기 (Epitope)	특정 항체와 결합하거나 생성을 자극하는 항원 분자의 부분
호지킨 림프종 (Hodgikin Lymphoma)	리드-스텐버그 세포 또는 비정상적으로 증식이 일어난 림프구 및 조직구를 특징으로 하는 악성 림프종.
적응증 (Indication)	어떠한 약제나 수술 따위에 의하여 치료 효과가 기대되는 병이나 증상
항원 (Antigen)	항체 생성 및 각종 면역반응을 유도할 수 있는 물질. 바이러스, 박테리아 등 외부 생명체뿐만이 아니라 생체 내 단백질도 항원으로 작용할 수 있음
항체 (Antibody)	면역계에 있어 항원(박테리아 등)의 자극에 의하여 생체 내에서 생성되는 항원과 특이적으로 결합하는 단백질, 항원의 자극에 의해 생체에서 만들어져서 질병을 일으키는 세균, 바이러스, 종양세포 등의 항원과 특이적으로 결합하여 항원의 작용을 방해하거나 이를 제거하도록 면역반응을 통해 만들어지는 단백질
조건부허가제	식품의약품안전처가 만든 임상 2상 자료를 바탕으로 의약품 시판을 허가하는 조건부 품목허가 제도로 생명을 위협하거나 한 번 발병하는 증상이 호전되기 어려운 중증의 비가역적 질환 환자에게 치료 기회를 제공하기 위한 것임
RMAT (Regenerative Medicine Advanced Therapy)	중대하거나 생명을 위협하는 질병에 대해 재생치료가 가능한 약물 또는 치료법의 개발을 촉진하는 목적으로 만들어진 제도

